MATH20132 Calculus of Several Variables. 2020-21

Solutions to Problems 9 Lagrange’s Method
1. For x € R? let f(x) = 2? — 3zy + y*> — 5z + by
i. Find the critical values of f(x) in R?

ii. Find the critical values of f(x) restricted to the parametric curve (¢2,3)" ¢ €
R,

iii. Find the critical values of f(x) restricted to the level set x + 6y = 6 (use
Lagrange’s method).

Solution i The critical values of f(x) in R? are the solutions of Vf(x) =
0. The two components of the gradient vector give 2z — 3y — 5 = 0 and
—3z + 2y + 5 = 0. So the critical point in R? is (1, —1)".

ii. For the critical points of f(x) : x = (¢2,t3)" ,¢ € R look for the critical
points of f((tQ, t3)T) .t € R, i.e. when the gradient vector is zero.

For a function of one variable the gradient vector has one component, the

derivative of .
f((tQ, t%) ) = ' — 3t + 1% — 5¢2 + 5t3,

which is 6t° — 15t* 4 4¢3 + 15> — 10t. This factors as
t(t—1)(t+1) (6t* — 15t + 10)

(The square can be completed in the quadratic factor as 6 (t — 5/4)% 4+ 5/8
which shows that it is never zero and so cannot be factored further.)

Thus there are critical points when t = 0,1 and —1, i.e. at points

0,007, (1,1)" and (1,-1)".

iii. For the critical points of f(x) : x + 6y = 6 we use Lagrange’s method. So
if g(x) = o + 6y — 6, we try to solve V f(x) = A\Vg(x) along with = + 6y = 6.
The co-ordinates of the gradient vectors give the system

20 — 3y —H =X and 3z +2y+5=06A\

Solve for x and y :

r=1—4\ and y=-—1-3\.
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Yet we require = + 6y = 6,i.e. (1 —4X) — 6(1+3X) = 6, which leads to
A = —1/2. Hence the only critical point is (3,1/2)".

Note we did not need to use Lagrange’s method, we could instead have
substituted x = —6y+6 in f(x) and looked for the turning points f,(x) = 0.

The point of the question is that a function f(x), x € S C R™ may
have different critical points depending on the set S. Also, if S is given
parametrically as the image of g (u), u € R™, we look for critical points of
f(g(u)). Thus Lagrange’s method is only applied when S is a level set.

2. i. Find the minimum value of 3z% + 3y? + 22 subject to the condition

r+y+z=1

ii. Find the maximum and minimum values of xy subject to the condition
2., ,2

¢ +y =1

iii. Find the minimum and maximum values of xy? subject to the condition
r?/a* + y*/b? = 1 (where a and b are positive constants).

Solution i. Let f(x) =32 +3y*+ 2%, and g(x) =2 +y+2—1, x € R>.
We wish to find min { f(x) : g(x) = 0}.

The set {x : g(x) = 0} is a level set and, to be a surface, the Jacobian of ¢
has to be full rank. Yet g is scalar-valued so this is equivalent to demanding
that the gradient of g is non-zero. Here Vg(x) = (1,1,1)" for all x and so
is non-zero for all x and we can apply the method of Lagrange multipliers.
This gives the equation Vf(x) = AVg(x) for some A along with g(x) =0 .

Write these equations as

(6x, 6y, 22) = A(1,1,1),
rT+y+z =

The first gives y = z, z = 3z. In the second this gives x = 1/5 in which
case y = 1/5 and z = 3/5. (That A = 6/5 is true but of no interest.) Hence

a=(1/51/5,3/5)"
is an extremal point of f(x) restricted to g(x) = 0. At this point f(a) =
3/25+43/25+9/25 = 3/5.
The set of x : z +y + 2z = 1 is closed but not bounded, so we cannot
immediately say that f(x) attains it’s lower bound at a. You could argue

by first restricting to the box |z|,|y|,|z|] < 1. We now have a closed and
bounded region on which f(x) will attain it’s lower bound. When you look
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for this point you will either find a or a point on the boundary. But for any
point on the boundary or even outside the box, i.e. when we have at least
one of x| > 1, |y| > 1 or |z| > 1, then f(x) > 1 > f(a). Thus f(a) is the
minimum value.

ii. Let f(x) = zy, and g(x) = 2* + y*> — 1 with x € R% Here Vg(x) =
(22, 2y)" which is non-zero for all x : g (x) = 0. So we can apply the method
of Lagrange multipliers. The method gives the equations

(y, ) = A (2z, 2y) along with 24t = 1.

From the first y = 2\z and & = 2\y which together gives z = 4\*z. The
solutions of this are either z =0 or A\ = £1/2.

e If z = 0 then y = 2\z = 0 but (0,0)” is not a point satisfying 2% +y? =
1.

o If A = +1/2 then y = 2\z = 4. In 2 + y?> = 1 this gives z = +1/4/2.
Thus we have four solutions

ar = (1/\/5, 1/¢§>T, ay = (1/\/5, —1/\/§)T,

(V2 AN2) e = (-1M2 -1N2)

as

Since the circle 22 + 9% = 1 is a closed and bounded set the continuous
function f must have minimum and maximum values on it. These must
occur within the points we have found.

Checking,

e f(az) = f(ag) = —1/2 is the minimum value,

o f(a;) = f(ay) = 1/2 the maximum.



What we are doing in this problem is finding the points on the blue line
with the largest height, i.e. largest value of z, with (z, y)T restricted to the
red circle.

P3

iii. Let f(x) = zy? where x € R?, subject to the condition z?/a?+y*/b*—1 =
0. Here Vg(x) = (2z/a?,2y/b?)" which is non-zero for all x : g (x) = 0. So
we can apply the method of Lagrange multipliers. The method gives the
equations

2v 2y 2 q?
2 _ _
(y,2xy)—)\(a2,b2> and 2+b =1
From 2zy = \y/b? either y =0 or = = \/b%.

e If 2 = \/b? then, combined with 3> = 2\z/a?, we get y> = 2\*/ab?.
In 22/a® + y*/b? = 1 we get

1 /A\° 12) ab®
~ (2 —1, ie A=4+22
a2 <62) TRar T e V3

Thus we get four points

(b))

e If y = 0 then = = +a and we get two more point (+a,0)”.

Since the ellipse 2%/a? + y?/b*> = 1 is closed and bounded a continuous
function must have minimum and maximum values. By evaluating the func-
tion at the points found above we see that the minimum is —2ab? / 3\/3, the
maximum 2ab®/3v/3 (given that a is positive.)



Note In both parts ii & iii the problem can be reduced to a problem of one
variable:

i. Finding extrema of zy subject to 22 +y? = 1 is the same as finding extrema
of £xv1 — 22,

ii Finding extrema of zy? subject to z%/a*+ y?/b* = 1 is the same as finding
extrema of b*x(1 — 22 /a?).

But, if asked to use Lagrange’s method, use it!

3 Find points on the circle (z — 2)* + (y + 1) = 4 which are a maximum
and minimum distance from the origin.

Hint consider the square of the distance.

Solution Follow the hint and find the minimum and maximum of the square
of the distance function from the origin to (z,y)". So we start by finding the
critical points of 2 4 y? subject to (z — 2)* + (y+ 1)* = 4.
Here Vg(x) = (2(z—2),2(y+1))" # 0 for all x : g(x) = 0. The
method of Lagrange’s multipliers then gives
20 =2\ (xr —2) and 2y =2\ (y + 1).
Rearrange as

A=D1 (@x—-2)=2and A—1)(y+1)=—-1.

Multiply (z — 2)°+(y 4+ 1)> = 4 by (A — 1)* and substitute in (A — 1) (z — 2) =
2 to get 22 + (—1)* = 4 (A — 1)*. The resulting 4 (A — 1) = 5 has two solu-
tions A = 1+ +/5/2. These lead to the points

T T
<1o+4¢5 _5+2\/3> - (10—4\/3 _5—2¢5>

5 ) d )

respectively.

Note this can be checked. Without proof it seems reasonable that if we
consider the straight line through the origin and the centre of the circle
(2,—1)", then the circle will intersect this line at the points we need (this
would require a proof). The point of the question is that if you need a
critical point of the distance you can find a critical point of the square of the
distance.



4. Find the minimum distance from the point on the z-axis (a,0)” € R? to
the parabola y? = z.

Solution As in the previous question, consider the square of the distance
from (a,0)" to a point (z,y)” on the parabola, which is (z — a)® + (y — 0)°.
So, we need to minimise f(x) = (z —a)® + y? subject to the condition
g(x) = 0, x € R?, where g(x) = 32 — z. Here Vg(x) = (—1,2y)" which is
never zero so we can apply the method of Lagrange multipliers. This gives

2(x —a) = =\
2y = 2)\y,
P o=

From 2y = 2)\y either y =0 or A = 1.
e If y =0 then x = y* = 0 too.
e If A\ =1 then 2(x—a) = —1,ie. x =a—1/2 and y = =z =

+v/a —1/2 provided a > 1/2.

So the critical points are 0 and, when a > 1/2,

a = (a— 1/2, M)T, a, = (a—1/2, —Va— 1/2)T

Checking at the points found: f(0) = a? and, ifa > 1/2, f(a;) = f(as) =
a—1/4. Take the positive root to find the distance and we have the minimum
distance is

|al ifa<1/2
a—1/4 ifa>1/2.

The set of x : g(x) = 0 is closed but not bounded so we need an ad-hoc
argument (not given here) to prove that we have, in fact, found the minimum
values.

5. Find the extremal values of f(x) = zy + yz, x € R? on the level set

Yy =
yz—x = 0.



Solution For this we need that the Jacobian of the level set is of full rank.

The Jacobian is
2¢ 2y 0
-1 z y )

On 2% + y? = 1 we cannot have z and y zero simultaneously, so the top row
of the Jacobian is never 0. The two rows are possibly linearly dependent if
y = 0, but then yz = x implies x = 0 which we have noted is not possible.
Thus the Jacobian matrix is of full rank for all x in the level set and we can
apply the method of Lagrange multipliers.

At extremal values there exist A\, u € R such that
Vf(x) = AV (2° + ) + uV (yz — 2).
So we have the system
y=Now—p, x+z=2N+pz, y=py, x°+y*=1 and yz==x.
From y = py either y =0 or p = 1.

e If y = 0 the last two conditions become 2? = 1 and 0 = z of which
there is no solution.

e Soy # 0 and p = 1, when the system becomes

y=Xx—1, 2=2y)\, 22 +9y*=1 and yz=2x.

From the second, 2\ = z/y, which in the first gives y = 2%/y — 1.
Rearrange so y> +y = 22 = 1 — y?, having used the third equation.
Therefore 2y* +y — 1 = 0. This factorises as (2y — 1) (y + 1) = 0. The
solution y = 1/2 gives z = £1/3/2 and z = ++/3. The solution y = —1
gives r = 0 = z.

Hence, the solutions are
a; = (07 _]-7 0)T7
T
a, = <\/§/2, 1/2, \/5) ,
T
a; = (=v3/2,1/2, ~3)

Calculating f at these points give f(a;) = 0, f(as) = 3v/3/4, the maxi-
mum value, f(as) = —3v/3/4, the minimum value.
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The set of x : g(x) = 0 is closed but not bounded so we need an ad-hoc
argument (not given here) to prove that we have, in fact, found the extremum
values.

6. Find the maximum and minimum values of 4y — 2z subject to the condi-
tions 2z —y — 2z = 2 and 22 + 32 = 1.

Solution The level set is closed and bounded. (z?4y* = 1 implies |z, |y| < 1
while 2z — y — 2z = 2 means |z| = |22 —y — 2| < 2|z| + |y| + 2 < 5, by the
triangle inequality.) The function f(x) = 4y — 2z is continuous and so must
have maximum and minimum values on the level set.

The Jacobian matrix of the level set is

2 -1 —1
2¢ 2y 0 /)

This is not of full-rank only if z = y = 0 which, because of 2 + y? = 1 does
not lie on the level set. So at all points of the level set the Jacobian matrix
is of full-rank and we can apply the method of Lagrange multipliers.

At extremal values there exist A, € R such that Vf(x) = AVg! (x) +
uVg? (x). This gives system of equations

0 = 22+ 2ux
4 = —A+2uy
-2 = =)

along with 20 —y — 2z =2 and 2% + ¢y? = 1.

Substituting A = 2 into the first two equations gives py = 3 and pxr = —2.
Then, multiplying 22 + 3> = 1 by p gives p2 = (uz)® + (uy)> = 44 9 so
i = £v13. Thus

r=7F2/V13, and y=+3/V13.

Then

2=2r—y—2=TF4/V13F3/V13 -2 =F7/V13 - 2.

So the two critical points of f on the surface are

a = (Vi3 -3/V13 7/@—2)T,
a, = (-2/V13,3/VI3, —7/\/ﬁ—2)T.
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All that remains are the calculations
fla)) = —26/V13+4=—-2V13+4,
flag) = 2V13+4.
Therefore the maximum value of f on S is 2\/1_3+4, the minimum —2+/13+4.

7 Find the minimum distance between a point on the circle in R? with the
equation 22 + 2 = 1 and a point on the parabola in R? with the equation
y? =2(4—x).

Solution Let (x,y)T be a point on the circle, so z? + > = 1, and let
(u,v)" be a point on the parabola, so v2 = 2 (4 —u). Then, as in Question
2, the problem is to minimize the function f(x) = (z — )+ (y — v)*, where
X = (x,y,u,v)T (the square of the distance between (w,y)T and (u,v)T)
subject to the constraint

22+t -1
= =0.
g(x) (U2—2(4—U))
The Jacobian matrix

2% 2y 0 0
‘]g(x):(o 0 2 21;)

is not of full rank only if either row is zero. The second row is obviously never
zero, the first is if = y = 0 but this does not satisfy 22 4+ y? = 1. Hence we
can apply the method of Lagrange multipliers. This gives the equations

Vf(x) = A\Vg'(x) + uVg*(x), 2> +y* =1 and v* =24 —u).
The first of these is

2(z —u) 2z 0
—22(?:5_—1}2) A Q(SU e g
—2(y —v) 0 2v
So
(x —u) = Az, (1)
(y—v) = My,
—(@—u) = p
—(y—v) = .
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There are many ways to solve this system, what follows is just one.

From the last pair — (z —u) = p and — (y — v) = pv we get v (r —u) =
y — v. Then from the first pair

Ay=y—v=uv(r—u)= Nz,
i.e. Ay = Avz. Thus either A =0 or y = vx.

e If A =0 then from the first two lines in (6) we have x = u and y = v,
ie. (z,y) = (u,v). But this is impossible since the curves z? + y? =
1 and y* = 2(4 — ) do not intersect. (If they did x would satisfy
1 —2? =2(4 — ) and you can check this has no real roots.)

e If y = vz then multiply v (z — u) = y — v through by z and use vz =y
to get y(x —u) = x(y —v) i.e. uy = vx =y. Thus either y = 0 or
u=1.

x If y = 0 then from 22 +9* =1, 2 = £1. From y = vz, v = 0 in

which case, from v? = 2 (4 — u), we obtain u = 4. So we get the
two points

a; = (1,0,4,0)" and a, = (—1,0,4,0)" .

% If u = 1 then, from v? = 2(4 — u),we obtain v = ++/6. Then
y = ve = £1/6x. Using 22 +y? = 1 we find 2 = +1/4/7. Thus we
get a further four points

a; — <1/\/7, V6/7. 1, VE)T,

ar = (V7 V67,1, —\/6>T,
as — <—1/\/_, /67, 1, \/E)T,
as = (—1/V7, Vo7, 1, —\/6>T.

Note that because of y = vx there is not a free choice on the sign
of y, it follows from the choices for z and v, thus four points.
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Now we are left with the calculations, f(a;) =9, f(as) = 25,
flag) = flay) =8 —2V7 and f(as) = f(as) =8+ 2V7

The minimum distance therefore is 8 — 21/7, approximately 2.70849......

8. An ellipse in R? is given by the equations

202 + y? = 4,
r+y+z=0.
The intersection of a cylinder with a plane.

Use the method of Lagrange multipliers to find the points on the ellipse which
are closest to the y-axis.

(This is a question from the June 2012 examination which turned out to be
too difficult! It should be alright away from the pressure of the examination
room. When you come to solving a system of equations remember to focus
on finding z, y and z, i.e. remove the Lagrange parameters A and p as soon
as possible.)

Solution Given points (z,y, z)T on the ellipse and (0, v, O)T on the y - axis,
the square of their distance apart is 2% + (y — v)” + 2. When this is minimal
we must have y = v, and so it remains to minimise f(x) = z? + 22, subject

to g (x) = 0 where
222 + % — 4
g(x) = :
r+y+=z

The level set x : g(x) = 0 is closed and bounded. The function f is
continuous and so will be bounded and will attain it’s bounds.

The Jacobian matrix of g is

‘]g(x):(ﬁx 21y (1))

This is not full rank only if x = y = 0 but this does not occur in any solution
of g(x) = 0. Hence we can apply the method of Lagrange multipliers and
solve

Vf(x) = A\Vg'(x) + uVgix) with x€R* \,p€R and g(x)=0.
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This gives the equations

20 = 4 \xr + pu,
0 = 2X\y+p,
22 =,

along with g (x) = 0. Substituting the third equation p = 2z into the first

two give
r=2\r+z and Ay = —z.

Multiply the first of these by y and substitute in the second to get
vy = —2zx + 2y =—2(2x —y).
From ¢%(x) = 0 we have —z = x + y so
zy = (v +y) (2r —y) =22° + 2y — y?, ie y* =227

From ¢'(x) = 0, we have 4 = 2z%+y?. Combined with y* = 222 this gives
4 =4x% so x = +1. Then y = +4/2 and z follows from 2z = —z — Y.

This leads to four critical points of f restricted to the surface:
T
a = (17 \/§a _1_\/§> 5
- 2_1+¢j

(
a; = (-1,v21- )T,
(-

ay =

a; = 1, V2, 1+\/_)
Calculating,
fla) = 4+2V2,
fla) = 4-2V2,
flag) = 4-2V2,
fla)) = 442V2.

So ay and a3 are the points on the ellipse closest to the y-axis.
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Solutions to Additional Questions

Solutions have not been written up for all of the following.

9 Show that zy has a maximum on the ellipse 922 + 4y% = 36 and find it’s
value.

Solution The function zy is continuous, the ellipse 922 +4y? = 36 is a closed
and bounded set. Hence xy is bounded and attains it’s bounds.

Lagrange’s multipliers gives y = 18 \z and x = 8\y. Then
r = 8\y = 8\ (18)\x)
so either z = 0 or 1 = 144)\°.

o If £ = 0 then y = 18z = 0. Yet (0,0)" does not satisfy 922 +4y2 = 36
so there are no critical points with = = 0.

o If 1 = 144)? then A\ = +1/12 and thus y = +3z/2. In 922 + 4y* = 36
this gives 1822 = 36 and thus z = +4/2. Hence we have four critical
points:

(Va.3va) (V2 -3/va) . (—va.3/va) and (—v2.-3/vV2) .

The maximal zy will come from critical points with non-zero coordinates of
the same sign, i.e. (\/5, 3/\/§)T and (—\/_, —3/\/§)T. Hence the maximal
value is 3.

10 Find the maximum and minimum values of
x2+y2+z2—a:y—xz—yz
subject to the condition
24yt -2+ 2y+62+9=0.
Solution We can complete the squares so

0 = 22+ +22—204+2+62+9
= (=1 +@+1)7+(e+3) -2
Thus, geometrically, we are looking for the extrema of
fx)=2>+ 1y + 2% —ay — 22 —y2
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subject to x € R? lying on the surface of a sphere, centre (1,—1, —3)T,
radius v/2. The surface of a sphere is closed and bounded. The function f is
continuous and so will be bounded and will attain it’s bounds.

Let g (x) = 2?2+ y*> + 22 — 2x + 2y + 62 + 9. Then
Jg(x) = (22— 2,2y +2,22+6),

which is zero only if x = (1,—1,—3). But since g is not zero at this point
Jg(x) is of full rank at x : g (x) = 0. So we can apply the method of Lagrange
multiplies, which requires solving Vf(x) = AVg(x) for some A € R. From
this we get

2 —y—2z = 2z — 2\, (2)
2 —x—2z = 2 \y+2)\, (3)
2z —x—y = 2 z+6),

along with ¢ (x) = 0.

Summing the equations above gives 0 = 2\ (z +y + 2z + 3). So either
A=0orz+y+2z+3=0.

o [f A =0 then

2v—y—2z = 0,
20— —2z = 0,

22 —x—y =

Subtracting the first two gives x = y. In the third get x = y = z. From
g (x) =0 then get 322 + 62+ 9 =0, i.e. 22 +2x + 3 = 0. But this has
no real solutions since 22 + 2z 4+ 3 = (z +1)> +2>2 > 0.

e Hence A # 0 and we must have z +y + 2z + 3 = 0. Rearrange, z =
—3 — z — y and substitute into (2) and (3) to get

2A—=3)z=3+2\ and (2A\—3)y=3—2A\.
Then
2\ —3)z2=-3(2\—3) — 2 (22 —3) —y (2\ — 3) = —6A + 3.

Substitute into g (x) = 0 to get

24/\2 — 12\ — 27
2\ —3)°
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The numerator factorises as (3 + 2X) (2\ — 9) so we find two solutions
A= —3/2 and A = 9/2. Substituted back in we find

a;=(0,—1,—-2)" and ay,=(2,—1,-4)".

The calculations are f(a;) = 3, the minimum and f(a;) = 27 the maxi-
mum value.
11. Find the shortest distance from the origin to x? + 3zy + y* = 4.

12. Find the shortest distance from (0,0, 1)T to y? + 2% 4 4wy = 4 in the 2-y
plane.

Solution This problem is in R?® even though y? + 2% + 42y = 4 appears to
be in R?. The general point of R? on y? + 2% + 4oy = 4 is (m,y,O)T. The
(square of the) distance of this point from (0, 0, l)T is 22 +1y%+1. So we need
minimise z? + y? + 1 subject to y* + 2% + 4zy = 4. Lagrange multipliers give
20 = A2z +4y) and 2y = \(2y+4x).
Rearrange as (1 — A\)x = 2\y and (1 — A\)y = 2Az. Then
(1=XN’z=(1-)\)2\y =4\’

So either 2 = 0 or (1 —\)* = 4\%.

o If x =0in y*+ 2% +4xy = 4 then y = £2. So we get two critical points

(0,2,00" and (0,-2,0)".
o If (1 — \)* = 4)? then either 1 — XA =2\ or 1 — A = —2)\.
« If 1 — X =2\ ie. A =1/3, then (1 — A)z = 2\y implies z = y.

In y? + 22 + 4xy = 4 this leads to 622 = 4, so z = 4+/2/3. This
gives two more critical points

(\/2/3, V2/3, 0>T and (—\/2/  —/2/3, 0>T.
« If 1—X=—2\i.e. A= —1,then (1 — \)z = 2\y implies z = —y.

In 4% + 22 + 4oy = 4 this leads to —22? = 4 which has no real
roots and we get no more critical points.
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The last two critical points give the minimal distance, 4/3.

13. A cylindrical can (with top and bottom) has volume V. Subject to this
constraint, what dimensions give it the least surface area?

Idea of solution If the cylinder of height h and radius r the area is 27rh +
272 and volume 7r2h. So the essence of the question is to minimise rh + r?
subject to mr?h = V.

Solution Define g(h,r) = mr*h — V and f(r,h) = rh + r%. The set of
(h,r)T : g(h,r) = 0 is closed but not bounded. But f is continuous and
bounded below by 0. Thus it will have a minimum value.

The Jacobian matrix is Jg(h,r) = (7r?, 27rh). This is only not of full
rank if » = 0 but this does not satisfy g(h,r) = 0 for any h. Hence the
Jacobian matrix is of full-rank and we can apply Lagrange’s method to find

A:Vf(h,r)=AVg(h,r). That is
r=Atr? and h+2r = \2rnh,

along with g(h,r) = 0.

From r = Amr? we have either r = 0, but we saw above that this was
impossible, or 1 = Anr. In the second equation this gives h + 2r = 2h, i.e.
h = 2r. (The height of the cylinder equals the diameter of the base.) In
g(h,7) = 0 this gives 2713 = V. Then r = (V/2m)"*, h = 2(V/2m)"* and
the surface area is

3(2m) BV,

14. Find the nearest point on the ellipse 2% + 2y = 1 to the line z + y = 4.

Idea of solution If (z,y)" is a point on the ellipse and (u,v)” a point on
the line then (z —u)® + (y — v)” is the square of the distance between the
two points. So need to minimise (z — u)* 4 (y — v)* subject to 22 4+ 2% = 1
and u + v = 4.

15. How close does the intersection of the planes v +w +x +y + 2 =1 and
v—w+2r —y+2z=—1in R® come to the origin?

Idea of solution To minimise v? + w? + 2% + y* + 2% (the square of the
distance of (v, w,z,v, Z)T from the origin) subject tov+w+z+y+2=1
and v —w + 2x —y + z = —1. The answer is v/612/36.
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Solution Let

vt+wt+r+y+z—1
g(X)=< Y )

v—w+2xr—y+z+1
for x = (x,y, 2, v, w)T. Then
1 1 11 1
‘]g(x):(z 111 —1)
which is of full-rank. So we can apply Lagrange’s method, solving Vf(x) =

AV (x) + pVg?(x) for some A, u € R along with ¢g'(x) = 0 and ¢*(x) =
The first condition leads to

20 = A+ u,
2w =\ —p,
20 = A+ 2pu,
20=A—p
2z = A+ p.

From these we see that z = v and y = w. Substituted into g'(x) = 0 and
g*(x) = 0 we have 5 equations in 5 unknowns:

20 = A+ p,
20 =\ — U,
20 = A+ 2u,

042w+ =1,
20 —2w+2x =—1

The first two give 2v + 2w = 2\. The second and third 4w + 2z = 3.
Thus we have three equations in three unknowns:

3v—w—2x =0,
2042w +x =1,
20— 2w+ 22 = —1.

In matrix form

3 -1 =2 v 0
2 2 1 w | = 1
2 =2 2 x —1
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Thus

v 1 6 6 3 0 1 3
-8 4 8 —1 —4

Then
f(x) = V¥ +w+ 22+ 4 2% =207 4 2uw? + 2P
1 2 2 2
::5@(2x3+2x17+%—®)
612
362"

We have minimised the square of the distance, so the minimum distance

is v/612/36.

16. Let zq,...,x5 be b positive numbers. Maximise their product subject to
the constraint that x1 + 225 + 323 + 4x4 + 55 = 300.

Solution Let f(x) = z120232475 and g(x) = x1+2x9 + 3x3+4x4+ 525 — 300
for x = (21, g, &3, x4, x5)" € R®. First, Jg(x) = (1,2,3,4,5) # 0 and so
we can apply Lagrange’s method. This means solving Vf(x) = AVg(x) for
some A € R along with ¢g (x) =0 and x; > 0 for 1 <i<n. That is,

ToX3Lals = A

T1X3T4T5 — 2\

L1945 = 3\ (4)
L1935 = 4\

T1X9X3T4 = 5)\,
with ¢ (x) = 0 and x; > 0 for 1 <i<n. From (4) we see that
/\.171 = 2)\1172 = 3)\[E3 = 4)\[E4 = 5)\1‘5 (5)

If A =0 then, from (4), at least one z; = 0 when f(x) = 0. Presumably
we can find larger values for f(x) so assume A # 0. Then from (5),

T, = 2x9 = 3x3 = 4ry = dT5.
For this x we have
g(x) = x1+4 229+ 3wz + 4xy + 525 — 300
= b5x5+ dx5 + brs + x5 + dxrs — 300
= 25xz5 — 300.
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The requirement g(x) = 0 gives x5 = 12. Thus
r1 = 60, z9 = 30, x3 = 20 and x4 = 15.
At this point x = (60, 30, 20, 15, 12)" we find that f(x) = 6480000.

17. Find the distance from the point (10,1, —6) to the intersection of the
planes x +y + 2z =5 and 22 — 3y + z = 12.

Solution To minimise (z — 10)* + (y — 1)* + (2 + 6)° subject to
r+y+2z=>5and 2z — 3y + z = 12. (6)

The Jacobian matrix of this level set,

1 1 2
2 =3 1)’

is of full-rank and so we can apply the method of Lagrange multipliers. This
means solving

2 (z — 10) 1 2
2(y—1) =Al 1 | +p| =3 |,
2(2+6) 2 1
with A, 4 € R along with (6).
2(x—10) = A+2u (a),
2(y—=1) = A=3p (b),
2(2z46) = 2\ +pu (c).

Then 3 (a) 4+ 2 (b) and (b) + 3 (c) give
6(r—10)+4(y—1) = B,
6(2z4+6)+2(y—1) = T
Remove A and rearrange to 7x + 3y — 5z = 103. We thus have

r+y+2z = 5,
2v —3y+ 2z = 12,
Tr+3y —5z = 103.
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Solve. One way is to write it as

1 1 2 x 5
2 -3 1 y | = 12
7 3 -5 z 103

The inverse of the matrix is

1 12 11 7
= 17 —-19 3
27 4 -5
Hence
T 1 12 11 7 5 11
Y = 23 17 —-19 3 12 = 2
z 27 4 =5 103 —4

Therefore, the nearest point on line is (11,2, —4)” and the.distance is V6.

18. If a and b are positive numbers find the maximum and minimum values
of (zv — yu)? subject to the constraints 2 + y* = a? and u* + v* = V°.

Geometrically Consider two concentric circles with centre the origin, of
radius @ and b. Let x = (x,y)T be a point on the circle of radius a and
u = (u,v) a point on the circle of radius b. Look upon x and u as vectors
based at the origin. Then |zv — yu| = |x A u|, which represents the area
between the vectors x and u. It is the case that this is minimised when x
and u lie in the same direction, for the area will be zero. It doesn’t seem
unreasonable that the maximum is when x and u are orthogonal in which
case |x Au| = |x||u|] = ab. To prove this we might note that whatever x
and u are, we can rotate the situation so that u lies along the z-axis, i.e.
u = (b,0). Then the problem reduces to one of finding the extrema of y2b?
subject to 22 + y? = a.

19. Find the dimensions of the box parallel to the axes of maximum volume
given that the surface area is 10m?.

Idea of solution If z,y and z are the lengths of the sides of the box then
the volume is zyz and the surface area 2 (xy + yz + zz). So maximise zyz
subject to xy + yz + xz = 5.

Solution Let f(x) = zyz and S(x) = zy + yz + vz — 5 for x € R3. Physical
constraints imply that z > 0, ¥y > 0 and z > 0 Our problem is to determine
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the maximum of f(x) subject to S(x) =0 and x >0,y > 0 and z > 0. The
gradient vectors are

Vi(x) = (yz,zz,zy)" and VS(x) = (y+ z, 2+ 2,z +y)" .

Note first that, VS(x) = 0, if, and only if, x = 0, which does not satisfy
S (x) = 0. So we can apply the method of Lagrange multiplies, which requires
solving Vf(x) = A\VS(x) for some A € R along with S (x) = 0. That is

yz = Ay+2),
xz = MNa+2),
ry = Az+y).
If A =0 then yz = zz = zy = 0. Adding together we see that S (x) =
—5 # 0. So we have \ # 0.
Multiply by the appropriate factor to get

ryz = ANy +az),
ryz = My +yz),
ryz = Azz+yz).
Since A # 0 we can divide by A and deduce that xy + 22 = 2y + yz =

rz + yz,i.e. yz = xz = xy. Since no term is 0 we find that + =y = 2. In
S (x) = 5 this leads to 322 = 5, i.e. = (5/3)"/%. Then the maximal volume

is (5/3)%2.
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